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Binary collisions between charged particles in an external magnetic field are considered within a classical
second-order perturbation theory, i.e., up to contributions which are quadratic in the binary interaction, starting
from the unperturbed helical motion of the particles. The calculations are done with the help of an improved
binary collisions treatment which is valid for any strength of the magnetic field, where the second-order energy
and velocity transfers are represented in Fourier space for arbitrary interaction potentials. The energy transfer
is explicitly calculated for a regularized and screened potential which is both of finite range and nonsingular at
the origin, and which involves as limiting cases the Debye �i.e., screened� and Coulomb potential. Two distinct
cases are considered in detail: �i� the collision of two identical �e.g., electron-electron� particles, and �ii� the
collision between a magnetized electron and a uniformly moving heavy ion. The energy transfer involves all
harmonics of the electron cyclotron motion. The validity of the perturbation treatment is evaluated by com-
paring with classical trajectory Monte Carlo calculations which also allows to investigate the strong collisions
with large energy and velocity transfer at low velocities. For large initial velocities on the other hand, only
small velocity transfers occur. There the nonperturbative numerical classical trajectory Monte Carlo results
agree excellently with the predictions of the perturbative treatment.
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I. INTRODUCTION

In the presence of an external magnetic field B the prob-
lem of two charged particles cannot be solved in a closed
form as the relative motion and the motion of the center of
mass �cm� are coupled to each other. Therefore no theory
exists for a solution of this problem that is uniformly valid
for any strength of the magnetic field and the Coulomb force
between the particles. The energy loss of ion beams and the
related processes in magnetized plasmas which are important
in many areas of physics such as transport, heating, magnetic
confinement of thermonuclear plasmas, and astrophysics are
examples of physical situations where this problem arises.
This topic was studied starting with the classic papers in Ref.
�1� using kinetic equation approach, where the binary colli-
sions of the particles are masked due to the velocity average
in the collision operator. Recent applications are the cooling
of heavy ion beams by electrons �2–6� and the energy trans-
fer for heavy-ion inertial confinement fusion �see, e.g., �7�
for an overview�. The classical limit of a hydrogen or Ryd-
berg atom in a strong magnetic field also falls in this cat-
egory �see, e.g., �8� and references therein� but in contrast to
the free-free transitions �scattering� the total energy is nega-
tive here.

Numerical calculations have been performed for binary
collisions �BC� between magnetized electrons �9,10� and for
collisions between magnetized electrons and ions �11–15�. In
general the total energy E of the particles interacting in a
magnetic field is conserved but the relative and center-of-
mass energies are not conserved separately. In addition, the
presence of the magnetic field breaks the rotational symme-

try of the system and as a consequence only the component
of the angular momentum L parallel to the magnetic field L�

is a constant of motion. So, the constants of motion E and L�

reduce the phase space of the relative motion. A different
situation arises for the BC between an electron and uni-
formly moving heavy ion. As an ion is much heavier than an
electron, its uniform motion is only weakly perturbed by
collisions with the electrons and the magnetic field. In this
case L� is not conserved but there exists a conserved gener-
alized energy K �13,15� involving the energy of relative mo-
tion and a magnetic term. The apparently simple problem of
charged particle interaction in a magnetic field is in fact a
problem of considerable complexity and the additional de-
gree of freedom of the cyclotron orbital motion produces a
chaotic system with 2 degrees �or 1 degree for heavy ions� of
freedom �15–18�.

In this paper we consider the BC between two charged
particles treating the interaction �Coulomb� as a perturbation
to their helical motions. For electron-heavy ion collisions
this has been done previously in first order in the ion charge
Z for an ion at rest �19� and up to O�Z2� for an uniformly
moving heavy ion �20,21�. In Ref. �20� three regimes are
identified, depending on the relative size of the parameters a
�the cyclotron radius�, s �the distance of the closest ap-
proach�, and � �the pitch of the helix�. In earlier kinetic ap-
proaches �2–6� only two regimes have been distinguished:
fast collisions for s�a, where the Coulomb interaction is
dominant and adiabatic collisions for s�a, where the mag-
netic field is important, as the electron performs many gyra-
tions during the collision with the ion. The change �Ei of the
energy of the ion has been related to the square of the mo-
mentum transfer �p, which has been calculated up to O�Z�.
This is somewhat unsatisfactory, as there is another O�Z2�
contribution to �Ei, in which the second-order momentum
transfer enters linearly. Moreover, for applications in plasma
physics �e.g., for calculation of the ion energy loss in a mag-
netized plasma� one calculates the angular averaged energy
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transfer which vanishes within first-order perturbation theory
due to symmetry reasons and the ion energy change receives
contribution only from higher orders �21�. Indeed, the trans-
port phenomena, etc., are of order O�Z2� in the ion charge.

In the case of a strong magnetic field where the adiabatic
collisions dominate, the cyclotron action is an adiabatic in-
variant and can serve as starting point for calculating the
energy transfer. This has been successfully employed in par-
ticular in Ref. �10� for determining the equipartition rate in a
pure electron plasma. But it should be noted that the invari-
ant on which this method is based exists only in the presence
of a strong magnetic field when the cyclotron radius is the
smallest length characterizing the collisional dynamics.

Here we focus on BC between two magnetized identical
particles �e.g., electrons� within the second-order perturba-
tion theory and its comparison with classical trajectory
Monte Carlo �CTMC� simulations. The present work consid-
erably extends our earlier studies in Refs. �15,21� where the
second-order energy transfer for an ion-electron collision
was calculated with the help of an improved BC treatment
which is valid for any strength of the magnetic field and does
not require the specification of the interaction potential. In
addition, we consider here the impact parameter-averaged
energy transfer for the BC between magnetized electron and
heavy ion moving uniformly along the magnetic field which
has not been yet considered in Refs. �15,21�, and will give
analytical expressions which are more appropriate for an ex-
plicit calculation of the energy loss. Physically these two
distinct cases are similar except the time-dependent center-
of-mass cyclotron motion in the case of two identical par-
ticles. The paper is organized as follows. In Sec. II starting
from the exact equation of motion of two charged particles
moving in a magnetic field we discuss some basic results of
the exact BC treatment for the energy and velocity transfers
as well as the energy conservation. In the following Sec. III,
we discuss the velocity and energy transfer during BC of
magnetized particles for arbitrary magnetic fields and
strengths of the two-particle interaction potential. The equa-
tions of motion are solved in a perturbative manner up to the
second order in interaction force starting from the unper-
turbed helical motion of the particles in a magnetic field.
Then in Sec. IV we turn to the explicit calculation of the
second-order energy transfer for electron-electron collision
but without any restriction on the magnetic field B. The ob-
tained energy transfer involves all cyclotron harmonics of the
electron helical motion. For further applications �e.g., in
cooling of ion beams, transport phenomena in magnetized
plasmas� we consider the regularized and screened interac-
tion potential which is both of finite range and less singular
than the Coulomb interaction at the origin and as the limiting
cases involves the Debye �i.e., screened� and Coulomb po-
tentials. An exact solution for two-particle collision in the
presence of infinitely strong magnetic field is considered in
Sec. V. This also suggests an improved perturbative treat-
ment for repulsive interaction and in the case of strong mag-
netic field. In Sec. VI the results of the perturbative binary
collision model are compared with CTMC simulations in
which the scattering of ensembles of magnetized electrons
are treated exactly. This comparison allows to determine
clearly the range of validity of the perturbative treatment.

The results are summarized and discussed in Sec. VII. The
small velocity limits of the energy transfers are derived in the
Appendix.

II. BINARY COLLISION FORMULATION: GENERAL
TREATMENT

For our description of BC we start with considering the
equations of motion for two charged particles moving in a
homogeneous magnetic field and the related conservation
laws in general. This will then be specified to the two par-
ticular cases on which we will focus in this paper: the BC
between two electrons and between an electron and a uni-
formly moving heavy ion. Next the quantities of interest, the
velocity transfer, and the energy transfer of particles during
the binary collision will be introduced and discussed, before
we turn to the solution of the equations of motion in the
subsequent section.

A. Relative and cm motion and conservation laws

We consider two point charges with masses m1 and m2
and charges q1e and q2e, respectively, moving in a homoge-
neous magnetic field B=Bb and interacting with the poten-
tial q1q2e”2U�r� with e”2=e2 /4��0. Here �0 is the permittivity
of the vacuum and r=r1−r2 is the relative coordinate of the
colliding particles. For two isolated charged particles this
interaction is given by the Coulomb potential, i.e., UC�r�
=1 /r. In plasma applications the infinite range of this poten-
tial is modified by the screening. Then U may be modeled by
UD�r�=e−r/� /r with a screening length � which can be cho-
sen as the Debye screening length �D, see, for example �22�,
provided the relative velocity of the colliding particles is
smaller or of the order of the thermal velocity of the sur-
rounding plasma particles. Relative velocities which exceed
the thermal velocity lead to an asymmetric interaction poten-
tial which in general considerably complicates the theoretical
description. For the energy loss of charged particles in a
plasma without an external magnetic field it has been shown,
however, that such a dynamic, highly asymmetric interaction
potential can be replaced with an effective spherically sym-
metric velocity-dependent interaction, i.e., it can be modeled
as well by UD�r�=e−r/� /r with a velocity-dependent screen-
ing length � �see Refs. �12,23,24� for details�. We adopt
these findings for our present considerations and assume a
spherically symmetric interaction with a given fixed screen-
ing length in both our analytic expressions and the CTMC
simulations. For the envisaged applications of our given re-
sults, such as cooling forces, stopping power, etc., which
typically involves an average over the velocity distribution,
the screening length has then to be replaced by an appropri-
ately chosen velocity-dependent one.

The quantum uncertainty principle prevents particles �for
q1q2�0� from falling into the center of these potentials. In a
classical picture this can be achieved by regularization of
U�r� at the origin. Such a regularized potential �pseudopo-
tential� of the form �1−e−r/�� /r, replacing the bare Coulomb
interaction 1 /r, has been derived from quantum statistical
considerations �25,26�, where � is related to the �thermal� de
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Broglie wavelength. In our forthcoming investigations we
take the functional form of this short distance correction and,
including as well the screening contribution, hence use the
interaction UR�r�= �1−e−r/��e−r/� /r. It should be emphasized,
however, that the use of this regularized interaction here es-
sentially represents an alternative implementation of the
standard �lower� cutoff procedure needed to handle the hard
collisions in a classical perturbative approach where � is
taken as a given constant or as a function of the classical
collision diameter �see Sec. VI B�.

In the presence of an external magnetic field, the Lagrang-
ian and the corresponding equations of motion cannot be
separated into parts describing the relative motion �r=r1
−r2 ,v= ṙ� and the motion of the cm �R= �m1r1+m2r2� / �m1

+m2� ,V= Ṙ�, in general �see, e.g., �9,13,20,21��. Introducing
the reduced mass 1 /	=1 /m1+1 /m2 the equations of motion
are

v̇�t� − 	eB� q1

m1
2 +

q2

m2
2��v�t�
 b�

= eB� q1

m1
−

q2

m2
��V�t�
 b� +

q1q2e”2

	
F�r�t�� , �1�

V̇�t� − eB� q1 + q2

m1 + m2
��V�t�
 b�

=
	eB

m1 + m2
� q1

m1
−

q2

m2
��v�t�
 b� , �2�

where q1q2e”2F�r�t�� �F=−�U /�r� is the force exerted by
particle 2 on particle 1. The coupled, nonlinear differential
equations �1� and �2� completely describe the motion of the
particles. For solving the scattering problem, they have to be
integrated numerically for a complete set of the initial con-
ditions.

From Eqs. �1� and �2� follow the conservation of the par-
allel component of the cm velocity V�t� ·b=V0� and the total
energy

E = Ecm + Er =
�m1 + m2�V2�t�

2
+
	v2�t�

2
+ q1q2e”2U�r�

= const, �3�

but since, in general, the relative and center-of-mass motions
are coupled the relative Er and cm Ecm energies are not con-
served separately.

In the case of two identical particles, taking here elec-
trons, i.e., m1=m2=m, q1=q2=−1, the equations of motion
considerably simplify to

v̇�t� + �c�v�t�
 b� =
2e”2

m
F�r�t�� , �4�

V̇�t� + �c�V�t�
 b� = 0, �5�

with the cyclotron frequency of the electron �c=eB /m. Here
the cm motion, Eq. �5�, can be solved which leads to

V�t� � V0�t� = V0�b + V0��uc cos��ct� + �b
 uc�sin��ct�� ,

�6�

where V0��0 is the cm velocity transverse to the magnetic-
field direction b, and uc= �cos c , sin c� is the unit vector
perpendicular to b �c is the phase of the cm transversal
motion which is fixed by initial conditions�. The velocities
V0� and V0� are related to the particles unperturbed parallel
v0�� and transverse v0�� velocities ��=1,2�,

V0� =
v01� + v02�

2
, V0�uc =

v01�u1 + v02�u2

2
�7�

with the unit vectors u�= �cos � , sin �� �� are the initial
phases of the particles� which fix the initial transverse veloci-
ties �or coordinates� of the particles 1 and 2.

With the help of equation of motion �4� and relation �6� it
can be easily proven that the relative �Er� and cm �Ecm�
energies

Ecm = mV0
2�t� = m�V0�

2 + V0�
2 �, Er =

mv2

4
+ e”2U�r� �8�

are here conserved separately. They can be expressed by the
particles initial �unperturbed� velocities v0� according to
Ecm= m

4 �v01+v02�2 and Er= m
4 �v01−v02�2. Note that Ecm and Er

are here functions only of the difference of the initial phases
of the particles =1−2.

In the second case of BC between an electron and a heavy
ion of mass M and charge Ze, i.e., q1=−1, q2=Z, m1
=m , m2=M, and assuming m /M→0, 	→m, equations of
motion �1� and �2� turn into

v̇�t� + �c�v�t�
 b� = − �c�vi
 b� −
Ze”2

m
F�r�t�� , �9�

V̇�t� = 0, �10�

where vi is the given heavy ion velocity and V�t�=vi
=const. While the relative energy Er itself is not conserved in
this case, there exists nevertheless a constant of motion

K =
mv2

2
− Ze”2U�r� + m�cr · �vi
 b� = Er + m�cr · �vi
 b� ,

�11�

which can be easily checked with the help of Eq. �9�. In
contrast to the unmagnetized case, the relative energy trans-
fer during an ion-electron collision is thus proportional to
�r�vi�, where �r� and vi� are the perpendicular compo-
nents of the change in relative position and the ion velocity.
Only for ions which move along the magnetic-field direction,
i.e., �vi�=0�, where the magnetic term in Eq. �11� vanishes,
the relative energy is conserved. This case is very similar to
the case of electron-electron collisions except that the cm
velocity is constant.

B. Energy loss and velocity transfer

In the general case the rate dE� /dt at which the energy
E�=m�v�

2 /2 of particle � changes during the collision with
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the other particle can be obtained by multiplying the equa-
tion of motion for particle � by its velocity v��t�=V�t�
+���	 /m��v�t�, where �1=1 and �2=−1. As q1q2e”2F�r� is
the force exerted by particle 2 on particle 1 the integration of
this rate over the whole collision yields the energy transfer
�see �15� for further details�

�E� = ��q1q2e”2	
−�

�

V��� · F�r����d� �12�

assuming that for t→��, r�t�→� and U�r�t��→0. Accord-
ing to the conservation of total energy we have �E1=−�E2,
as it can be directly seen from Eq. �12�.

Alternatively the energy changes �Eq. �12�� can be ex-
pressed by the velocity transferred to particle 1 �or 2� during
the collision. For this purpose we split the velocity of the �th
particle, v��t�, into v��t�=v0��t�+�v��t�. Here v0��t� de-
scribes the free helical motion of the particles in the mag-
netic field, v̇0�− �q�eB /m���v0�
b�=0, while �v��t� is the
related velocity change �with �v��t→−��→0�. From the en-
ergy change with respect to the free motion �E��t�
= �m� /2�
�v0��t�+�v��t��2−v0�

2 �t�� the total energy transfer
�E� can then be expressed through the total velocity transfer
�v�=�v��t→��= �v��t�−v0��t��t→� and v0� ·�v�
=v0��t� ·�v��t� �t→�,

�E1 = − �E2 = m1�v01 · �v1 +
1

2
�v1

2� . �13�

Employing this way of calculating the energy transfer, as
e.g., in �20�, the potential U�r� has to be specified already at
an early stage of the calculation. In Sec. III we will show that
Eq. �12� allows for a more general formulation in which the
cutoff at large distances and the regularization at small dis-
tances can be treated much easier.

So far we considered the energy transfers of the particles
in the laboratory frame. In addition the energy transfers �E1
and �E2 can be expressed by the change in the relative en-
ergy �Er=��	v2 /2� and the relative and cm velocity trans-
fer ��V ·v�, respectively. Since �Er=−�Ecm �due to the con-
servation of total energy�, there follows a relation between
the energy transfers �E1 and �Er given by

�E1 =
m2 − m1

m2 + m1
�Er + 	��V · v� . �14�

Here, the second term is the total change in the scalar prod-
uct V�t� ·v�t�. For instance, this quantity is a constant for the
free unperturbed motion of identical particles where
V0�t� ·v0�t�= �v01

2 −v02
2 � /2=const and is given by the initial

velocities v01, v02.
In the case of identical particles the relative energy and

the cm energy are conserved, i.e., �Er=−�Ecm=0, and thus
�E1=−�E2=	��V ·v�. We note however that the longitudi-
nal ��Er�� and transverse ��Er�=−�Er�� parts of the energy
transfer �Er do not vanish, where

�Er� =
m

4
�v��2vr� + �v�� � 0. �15�

Here vr� =v01� −v02� and �v� are the components of v0�t� and
�v parallel to b, respectively.

For the collision of an electron and a heavy ion, with
m2=M�m=m1 and V=vi, the energy transfer to the ion
�Ei=�E2=−�E1 then follows from Eq. �14� as

�Ei = − �Er − mvi · �v = −
m

2
��v2� − mvi · �v . �16�

When the ion moves parallel to the magnetic-field direction
the relative energy transfer in Eq. �16� vanishes and �Ei� =
−mvi��v�, where vi� is the component of the ion velocity
parallel to b.

III. PERTURBATIVE TREATMENT: GENERAL THEORY

A. Trajectory correction

In this section we consider the theoretical treatment of the
scattering of two identical particles, here electrons, where we
seek an approximate solution of Eq. �4� by assuming the
interaction force between the particles as a perturbation to
the free helical motion. For the case of ion-electron scatter-
ing the corresponding considerations and derivations are dis-
cussed in detail in Ref. �15� and we thus focus on the
electron-electron case in the forthcoming discussion.

As the velocity of the cm motion is already fixed by Eq.
�6�, we have to look for the solution of Eq. �4� for the vari-
ables r and v in a perturbative manner,

r�t� = r0�t� + r�1��t� + r�2��t� . . . ,

v�t� = v0�t� + v�1��t� + v�2��t� . . . , �17�

where r0�t� , v0�t� are the unperturbed two-particles relative
coordinate and velocity, respectively, r�n��t� , v�n��t�
�q2nFn−1 �n=1,2 , . . .� are the nth order perturbations of r�t�
and v�t�, which are proportional to q2n �for electrons q=−1�.
Fn�t� is the nth order correction to the two-particle interac-
tion force. Using expansion �17� for the nth order corrections
Fn we obtain

F�r�t�� = F0�r0�t�� + F1�r0�t�,r1�t�� + ¯ , �18�

where

F0�r0�t�� = F�r0�t�� = − i	 dkU�k�keik·r0�t�, �19�

F1�r0�t�,r1�t�� = �r1�t� ·
�

�r
�F�r�

r=r0�t�

=	 dkU�k�k�k · r1�t��eik·r0�t�. �20�

In Eqs. �19� and �20�, we have introduced the two-particle
interaction potential U�r� through F�r�=−�U�r� /�r and the
force corrections have been written using a Fourier transfor-
mation in space.
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We start with the zero-order unperturbed helical motion of
two electrons in the relative frame

r0�t� = R0 + bvr�t + a�ur sin��ct� − �b
 ur�cos��ct�� ,

v0�t� = ṙ0�t� , �21�

where ur= �cos r , sin r� �r is the initial phase of the rela-
tive motion� is the unit vector perpendicular to the magnetic
field, vr� =v01� −v02� and v0�ur=v01�u1−v02�u2 �with v0�

�0� are the unperturbed relative velocity components paral-
lel and perpendicular to b, respectively. Here vr�b is the rela-
tive velocity of the guiding centers of two particles and a
=v0� /�c is the relative cyclotron radius. It should be noted
that in Eq. �21� the variables ur and R0 are independent and
are defined by the initial conditions. Explicitly the relative
cyclotron radius a and the phase r are connected to the
particles cyclotron radii a1, a2 and phases 1, 2, and 
=1−2, according to

eir =
a1ei1 − a2ei2

a
, a2 = a1

2 + a2
2 − 2a1a2 cos  .

�22�

The equation for the first-order relative velocity correc-
tion is given by

v̇�1��t� + �c�v�1��t�
 b� =
2q2e”2

m
F�r0�t�� , �23�

where the solutions can be given by an integral involving
force �19� and the unperturbed trajectory �21� by similar ex-
pressions as Eqs. �43�–�46� of Ref. �21� �see also Ref. �15��.

B. First- and second-order energy transfers

The total energy change �E1 of the first particle during
collision with particle 2 is given by Eq. �12�. Insertion of Eq.
�18� into the general expression �12� yields

�E1 = �E1
�1� + �E1

�2� + ¯ , �24�

where

�E1
�1� = q2e”2	

−�

�

dtV0�t� · F�r0�t�� ,

�E1
�2� = q2e”2	

−�

�

dtV0�t� · F1�r0�t�,r1�t�� �25�

are the first- and second-order energy transfer, respectively.
We now introduce the variable s=R0� which is the com-

ponent of R0 perpendicular to the relative velocity vector
vr�b. From Eq. �21� we can see that s is the distance of
closest approach for the guiding centers of the two particles’
helical motion. For practical applications the energy change
is now given by the average of �E1 with respect to the initial
phases of the particles 1 and 2 and the azimuthal angle �s
of s. Such an averaged quantity f will be abbreviated by �f�
in the forthcoming considerations.

We start with calculating the first-order longitudinal rela-
tive velocity transfer, �v�

�1�, which also contributes to the

second-order relative energy transfer according to Eq. �15�.
This quantity can be easily extracted from the parallel com-
ponent of the first-order relative velocity correction,
b ·v�1��t�, in the limit t→�, i.e., after completion of the in-
teraction. Thus, using the Fourier series of the exponential
function eiz sin � �27�, we obtain from the solution of Eq. �23�,

�v�
�1� = −

4�iq2e”2

m
	 dkU�k�k�eik·R0


 �
n=−�

�

ein�r−��Jn�k�a����n�k�� . �26�

Here Jn are the Bessel functions of the nth order, �n�k�
=n�c+k�vr�, k� =k ·b and k� are the components of k parallel
and transverse to b, respectively, tan �=ky /kx. Note that the
relative cyclotron radius a as well as the velocity of the cm
motion V0� depend on =1−2 �see Eqs. �7� and �22��.
Performing the averages with respect to the initial phases 1
and 2 and the azimuthal angle �s results in ��v�

�1��=0 for
spherically symmetric interaction potentials �U�r�=U�r� and
U�k�=U�k�� �see, e.g., Refs. �15,21�� due to symmetry.

The first-order energy transfer is obtained by substituting
Eqs. �6�, �19�, and �21� into the first one of Eq. �25�. Simi-
larly as the first-order relative velocity correction �v�

�1� �Eq.
�26�� the first-order energy change also vanishes if averaged
with respect to the initial phases of the particles 1 and 2
and �s.

Thus the energy change receives a contribution only from
higher orders, and we next evaluate the second-order energy
transfer �E1

�2� by inserting Eqs. �6�, �20�, and �21� and the
solution of Eq. �23� into the second equation of Eq. �25�.
This quantity is then averaged with respect to the initial
phases of the particles 1 and 2 and the azimuthal angle �s
of the impact parameter s. The obtained angular integrals are
easily evaluated using the Fourier series of the exponential
function. After averaging the energy transfer �E1

�2� with re-
spect to 1 and 2 the remaining part will depend on ���k
+k�� ·b�, i.e., the component of k+k� along the magnetic
field b. Thus this � function enforces k+k� to lie in the plane
transverse to b so that ei�k+k��·R0���k+k�� ·b�=eiQ·s���k
+k�� ·b�, where Q=k�+k�� . In addition, instead of phase 1
we introduce a new variable  according to 1=+2. Then
after performing 2 integration there remains average with
respect to the phase difference . The result of the angular
averaging finally reads

��E1
�2�� = 	

0

2� d

2�
E�,s� , �27�

where

E�,s� = −
2�iq4e”4

m�vr��
	 dkdk�U�k�U�k��J0�Qs���k�� + k��


 �
n=−�

�

�− 1�nein��−���Jn�k�� a�Jn�k�a�Gn�k,k��


�V0�k� − n�c
V0�

v0�

cos �� . �28�
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Here Gn�k ,k�� is given by Eq. �57� of Ref. �21�. The phase
factor �=r−c in Eq. �28� can be evaluated explicitly by
using Eqs. �7� and �22�. Introducing the phase difference of
the particles =1−2 it reads

ei�r−c� � ei� =
a1

2 − a2
2 + 2ia1a2 sin 

��a1
2 − a2

2�2 + 4a1
2a2

2 sin2 
. �29�

The series representation �28� of the second-order energy
transfer is valid for any strength of the magnetic field.

For most applications it is also useful to integrate the
1 ,2 ,�s-averaged energy transfer, ��E1

�2��, with respect to
the impact parameters s in the full two-dimensional �2D�
space. We thus introduce an energy loss cross section
�ELCS� �11,12,15,21� through the relation

� = 	
0

�

��E1
�2��sds = 	

0

2� d

2�
�̄�� . �30�

As �̄�� results from the s integration of the energy transfer
E� ,s� �Eq. �28�� one obtains an expression for �̄�� which
represents an infinite sum over Bessel functions. Moreover,
assuming regularized interaction and performing k integra-
tion in �̄�� yields an infinite sum over modified Bessel
functions �see, e.g., an example for ion-electron collision in
Ref. �15��. For arbitrary axially symmetric interaction poten-
tial similar expression is derived in the Appendix �see Eq.
�A1��. However, for practical applications it is much more
convenient to use an equivalent integral representation of the
ELCS which does not involve any special function. This ex-
pression can be derived from the Bessel-function representa-
tion of �̄�� using the integral representation of the Dirac �
function as well as the summation formula for �neinJn

2�a�
�27�. The energy transfer �̄�� after lengthy but straightfor-
ward calculations then reads

�̄�� = �̄��� + �̄��� , �31�

with

�̄��� = −
2�2��2q4e”4V0�

m�c
2vr�

	
0

�

tdt	 dk�U�k��2


�k�
2 + k�

2 sin t

t
�k� sin�k��t�J0�2k�a sin

t

2
� , �32�

�̄��� = −
2�2��2q4e”4V0�

m�c
2�vr��

cos �	
0

�

tdt	 dk�U�k��2


�k�
2 + k�

2 sin t

t
�k� cos�k��t�cos� t

2
�J1�2k�a sin

t

2
� ,

�33�

where �= �vr�� /�c is the relative pitch of the particles helices
divided by 2�. In Eq. �31� the energy transfer �̄�� has been
split into two parts which correspond to the cm motion along
��̄���� and transverse ��̄���� to the magnetic field.

An expression similar to Eqs. �27� and �28� has been ob-
tained in �15,21� for electron-heavy ion �no cyclotron mo-
tion� collision where the direction b of the magnetic field and
the direction nr=vr /vr of the relative velocity vr=ve�b−vi

�ve� is the component of electron velocity parallel to the mag-
netic field� of the electron guiding center is singled out in the
argument of the � function and the summand of the n sum-
mation. This prevents a closed evaluation of the energy
transfer for ion-electron collision for arbitrary direction of
the ion motion with respect to the magnetic field. But if the
ion moves along the magnetic field and the guiding center
vr�b has no component in transverse direction, as it is always
the case for a collision of two identical gyrating particles, the
energy transfer in such ion-electron collisions can be evalu-
ated in the same manner as already discussed in context with
deriving Eqs. �31�–�33� in a straightforward manner.

For that case of ion-electron collisions with constant vi
=vi�b the energy loss of the ion is given by �Ei=−mvi��v�,
see Eq. �16�, because the relative energy transfer �Er here
vanishes according to Eq. �11�. The velocity transfer ��v�

�2��
required for ��Ei

�2�� can be extracted from Eqs. �27� and �28�.
For identical particles this is the term in Eq. �28� which is
proportional to V0� �see, e.g., Eq. �14��. For the present case
of these specific ion-electron collisions the quantities q4 and
	=m /2 have to be replaced with Z2 and m, respectively.
Thus the s-integrated ��v�

�2�� for ion-electron collisions cor-
responds to Eq. �32�, i.e., more precisely to

	
0

�

��v�
�2��sds =

Z2

q4

1

2mV0�
	

0

2� d

2�
�̄��� . �34�

It should be emphasized that for ion-electron collision the
phase-dependent transversal relative velocity v0��� is re-
placed by the electron transversal velocity ve� and the rela-
tive cyclotron radius v0� /�c for identical particles is re-
placed by ve� /�c. Thus the integrands in Eqs. �27� and �34�
�and similarly in other angular-averaged quantities� do not
depend on the phase  �E� ,s�=E�s�� and, therefore, we
have −��E1

�2��=−E�s�→ ��Ei
�2�� for the second-order energy

transfer to the ion ��Ei
�2��.

We now turn briefly back to the case of identical particles
and consider the evaluation of the angular-averaged relative
energy transfer in longitudinal and transversal direction,
��Er�

�2��=−��Er�
�2��. According to Eq. �15� the longitudinal

relative energy transfer ��Er�
�2�� involves both ��v�

�2�� and the
angular-averaged value of ��v�

�1��2. The latter is calculated
from Eq. �26�. For further applications �see Sec. V� also the
quantity ���Er�

�1��2� is needed, which is given by

���Er�
�1��2� =

m2

4
vr�

2 ���v�
�1��2� . �35�

The angular-averaging procedure of the relative energy trans-
fers is the same as for deriving Eqs. �27� and �28�. Similarly
to the definition and derivation of Eqs. �30� and �31� we
define the related ELCS by

�r� = 	
0

�

��Er�
�2��sds = 	

0

2� d

2�
�̄r��� , �36�

�r1
2 = 	

0

�

���Er�
�1��2�sds = 	

0

2� d

2�
�̄r1�� , �37�

where the straightforward calculations yield
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�̄r��� =
2�2��2q4e”4

m�vr���c
	

0

�

dt	 dk�U�k��2k�J0�2k�a sin
t

2
�


��t�k�
2 + k�

2 sin t

t
�sin�k��t� − k� cos�k��t�� , �38�

�̄r1�� = 2�2��2q4e”4�	
0

�

dt	 dk�U�k��2k�
2 cos�k��t�


J0�2k�a sin
t

2
� . �39�

IV. ENERGY TRANSFER FOR THE SCREENED AND
REGULARIZED POTENTIAL

For the Coulomb interaction U�k�=UC�k�, the full 2D in-
tegration over the s space results in a logarithmic divergence
of the k integration in Eqs. �32�, �33�, �38�, and �39�. To cure
this cutoff parameters kmin and kmax must be introduced; see
�15,21� for details. But the averaged energy transfer, Eq. �27�
with Eq. �28�, can be evaluated without further approxima-
tion for any axially symmetric interaction potential, U�k�
=U��k�� ,k��. In this case the averaged energy transfer can be
represented as the sum of all cyclotron harmonics as it has
been done for ion-electron interaction in Ref. �15�.

To continue the interaction must be specified. In the fol-
lowing we consider throughout the regularized screened po-
tential U�r�=UR�r� introduced in Sec. II A with

UR�r� = �1 − e−r/��
e−r/�

r
,

UR�k�,k�� =
2

�2��2� 1

k�
2 + �2 −

1

k�
2 + �2� , �40�

where �2=k�
2+�−2, �2=k�

2+d−2, d−1=�−1+�−1, for which the
k integrations involved in Eqs. �32�, �33�, �38�, and �39�
converge.

A. Second-order energy transfer

As we discussed in Sec. III B energy transfer �27� must be
integrated with respect to the impact parameters s for prac-
tical applications. For general interaction potential this has
been done in Sec. III B, Eqs. �30�–�33�. In general for a study
of the convergence of the s-integrated energy transfers we
note that the case with s=a is most critical for the conver-
gence of the ELCS. This is intuitively clear as the gyrating
particles at �a1−a2��s�a1+a2 may hit each other on such a
trajectory. This should not matter for potential �40�, which
has been regularized near the origin for exactly that purpose.
On the other hand, the energy transfer for the unregularized
potentials UC and UD diverges for s=a �see Ref. �15� for
some explicit examples�.

For the present case of the regularized and screened inter-
action potential Eq. �40�, i.e., substituting this potential into
Eqs. �32� and �33�, the impact parameter integrated energy
transfers are

�̄��� = −
2q4e”4V0�

m�c
3�3

�vr��
vr�
	

0

� t2dt

R3�t��e−R�t��F1�R�t�,�t,t�

+
4

�2 − 1
F2�R�t�,�t,t�� + e−�R�t��F1��R�t�,��t,t�

−
4�2

�2 − 1
F2��R�t�,��t,t��� , �41�

�̄��� =
q4e”4

m�c
3�3

v02�
2 − v01�

2

�vr��
	

0

� t sin tdt

R3�t� �e−R�t�


�F3�R�t�,�t,t� +
4

�2 − 1
F4�R�t�,�t,t�� + e−�R�t�


�F3��R�t�,��t,t� −
4�2

�2 − 1
F4��R�t�,��t,t��� .

�42�

Here �=� /�= �vr�� /�c�, R2�t�=�2t2+4�a2 /�2�sin2�t /2�,
�=� /d=1+� /�, and

F1�R,�,t� = 2 + 2R − R2 + �1 −
sin t

t
��R2 + R + 1 −

�2

R2 �R2

+ 3R + 3�� , �43�

F2�R,�,t� = R + 1 −
1

R2�1 −
sin t

t
��R3 + 4R2 + 9R + 9

−
�2

R2 �R3 + 6R2 + 15R + 15�� , �44�

F3�R,�,t� = 2 + 2R − R2 + �1 −
sin t

t
��R2 − R − 1 −

�2

R2 �R2

+ 3R + 3�� , �45�

F4�R,�,t� = R + 1 −
1

R2�1 −
sin t

t
��R3 + 2R2 + 3R + 3

−
�2

R2 �R3 + 6R2 + 15R + 15�� . �46�

Note that the quantity �̄��� vanishes at a1=a2 and the en-
ergy transfer occurs only due to the cm motion along the
magnetic field �̄���. We also note in particular the depen-
dence of the sign of the transversal energy transfer �42� on
a1−a2.

As already discussed in Sec. III B the energy transfer in
the case of electron-heavy ion collisions is given by the
s-integrated ��v�

�2��, see Eq. �34�, now with �̄��� from Eq.
�41�.

B. Second-order relative energy transfers

Similarly, substituting Eq. �40� into Eqs. �38� and �39�, we
obtain for the relative ELCS �̄r��� and �̄r1��,
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�̄r��� =
2q4e”4

m�vr���c�
	

0

� dt

R3�t��e−R�t��Y1�R�t�,�t,t�

+
4

�2 − 1
Y2�R�t�,�t,t�� +

1

�2e−�R�t�


�Y1��R�t�,��t,t� −
4�2

�2 − 1
Y2��R�t�,��t,t��� ,

�47�

�̄r1�� = 2q4e”4�	
0

� dt

R�t��e−R�t��P1�R�t�,�t�

−
4

�2 − 1
P2�R�t�,�t�� + e−�R�t��P1��R�t�,��t�

+
4�2

�2 − 1
P2��R�t�,��t��� , �48�

where

P1�R,�� = 1 −
�2

R2 �R + 1� ,

P2�R,�� =
1

R2�R + 1 −
�2

R2 �R2 + 3R + 3�� , �49�

Y1�R,�,t� = − R2 + �2�3R + 3 − R2�

+ �2�1 −
sin t

t
��R2 + R + 1 −

�2

R2 �R2 + 3R + 3�� ,

�50�

Y2�R,�,t� = ��2 + 1��R + 1�

−
�2

R2 �R2 + 3R + 3� −
�2

R2�1 −
sin t

t
��R3 + 4R2

+ 9R + 9 −
�2

R2 �R3 + 6R2 + 15R + 15�� . �51�

It must be emphasized that in contrast to the quantity �̄��
the relative ELCS �̄r��� and �̄r1�� do not depend on the
cm velocity components V0� and V0�. Expressions �47�–�51�
are of particular interest in connection with calculations of
the equipartition rate in a pure electron plasma as it has been
considered in Ref. �10�. The approach used in �10� is essen-
tially based on the relative transverse kinetic energy as an
adiabatic invariant which exists, however, only for suffi-
ciently strong magnetic fields. In addition and contrast to
these earlier investigations, our present results are a system-
atic perturbation treatment up to second order in the binary
interaction without restriction on the strength of the magnetic
field. In these respects our findings thus complement and
extend these earlier results. Corresponding evaluations of the
equipartition rate based on Eqs. �47�–�51� and comparison
with the results given in �10� are in progress.

Next we also consider the ELCS �̄��, �̄r���, and
�̄r1�� for vanishing cyclotron radius, a→0, i.e., when ini-

tially the electrons move along the magnetic field �v01�

=v02�=0�. From Eq. �26� it is straightforward to show that
in this case �v�

�1�=0. Also in this limit �̄���=0 and
�̄r1��=0 as can be easily seen from Eqs. �33� and �39� as
well as by explicitly evaluating Eqs. �42� and �48� with
R�t�=�t. The lengthy but straightforward integration in Eqs.
�41� and �47� �see Ref. �27�� yields

�̄�� = −
V0�

vr�

�̄r��� = −
4q4e”4V0�

mvr�
3 ��u� =

−
4q4e”4V0�

mvr�
3 � �2��2 + 1� + 2

2�2��2 − 1�
ln
�2�2 + 1

�2 + 1
− 1� ,

�52�

where u= ���2�2+1� / ��2+1��1/2 and ��u� is a generalized
Coulomb logarithm

��u� =
u2 + 1

u2 − 1
ln u − 1. �53�

Equation �52� is approximately valid also for finite cyclotron
radius a, assuming that the longitudinal velocity vr� is larger
than the transversal ones, v0� and V0�. Indeed, in this case
R�t���t since ��a and in Eqs. �41� and �42� the transversal
ELCS �̄��� can be neglected compared to the longitudinal
one. This indicates that in the high-velocity limit with vr�

�v0�, V0� the transversal motion of the particles as well as
its cm transversal motion are not important and can be ne-
glected. This high-velocity limit of the ELCS �̄r1�� is ob-
tained from Eq. �48�. Since only the contribution of small t is
important the function R�t� is approximated by R�t�� t��2

+a2 /�2�1/2��t�1+a2 /2�2� �here we keep the small term
�a2 /�2 because �̄r1�� vanishes at a→0�. Using this result
for R�t� from Eqs. �42�, �48�, and �52� in the high-velocity
limit we obtain within the leading term approximation for the
ELCS

�̄r1�� � 2q4e”4v0�
2

vr�
2 ���� , �54�

�̄��� � −
V0�

vr�

�̄r��� � −
4q4e”4V0�

mvr�
3 ���� , �55�

�̄��� �
2q4e”4

mvr�
4 �v02�

2 − v01�
2 ����� . �56�

Note that �̄�� and �̄r��� are isotropic, i.e., do not depend
on  while �̄r1�� contains a term which is proportional to
cos . Also, in the high-velocity limit the ELCS does not
depend on the magnetic-field strength and decays as �̄���
�vr�

−3, �̄����vr�
−4, �̄r����vr�

−2, and �̄r1���vr�
−2.

Finally we briefly turn to the case of small relative veloc-
ity, vr��v0�, V0�. It should be emphasized that the integral
representations of the ELCS, Eqs. �41�, �47�, and �48�, are
not adopted for evaluation of these quantities at small veloci-
ties. For this purpose it is much more convenient to use an
alternative Bessel-function representation of the ELCS as
shown in the Appendix. In addition, it is expected that the
limit of small vr� is the most critical regime for a violation of
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the perturbation theory employed here. Therefore explicit
analytical expressions in this limit can be useful for an im-
provement of the perturbation theory by comparing the ana-
lytical results with numerical simulations; see Sec. VI.

V. IMPROVED TREATMENT FOR THE REPULSIVE
INTERACTION

The magnetic field drastically changes the scattering
problem of two charged particles as discussed in Sec. I. One
important consequence of a strong magnetic field is the back-
scattering of the particles from the repulsive potential barrier
even at a finite impact parameter s �let us recall that in the
case of Rutherford scattering this occurs at either vanishing
impact parameters, s→0, or at vanishing relative velocity�.
For instance, in a strong magnetic field with a��, s and in
the case of attractive interaction the velocity and energy
transfers are very small and for symmetry reasons vanish
with increasing B; see the similar discussion in Sec. IV.
However, in the case of repulsive interaction the magnetic
field together with the interaction potential forms a potential
barrier because the particles’ motion is effectively one di-
mensional. Here two possible scattering regimes must be
clearly distinguished. To this end, we consider an exactly
solvable model for two interacting particles moving in the
presence of an infinitely strong magnetic field on rectilinear
trajectories along the field with vanishing cyclotron radii.
Introducing the relative coordinate �=z1�t�−z2�t� the relative
energy conservation �note that the cm energy is also con-
served since V=bV��t�=bV0� =const� for the regularized
Yukawa potential can be written in the form

�̇2 = vr�
2 �1 − �1�2

s0

r
�1 − e−r/��e−r/�� , �57�

where �1= �q1� /q1, �2= �q2� /q2, r2�t�=�2�t�+s2, and s0
=2�q1q2�e”2 /	vr�

2 . Here 	 is the reduced mass, s is the impact
parameter, and vr� is the initial longitudinal relative velocity
of the particles. Since the relative energy is conserved there
is no relative energy transfer and �Er=0. Then the energy
transfer of particle 1 is related to the relative velocity transfer

�v� = �̇�+��− �̇�−�� by �E1=	V0��v�; see Eq. �14�. For rea-
sons of symmetry, no velocity can be transferred from par-
ticle 2 to particle 1 if the interaction is attractive �q1q2�0�,
see, e.g., Eq. �57�. This may also be true for the repulsive
case �q1q2�0�. For instance, at s0�� �or equivalently x
=vr� /vs� �2 /��1/2 with �=� /� and vs

2= �q1q2�e”2 /	�� and ar-
bitrary s as well as at s0�� �or equivalently x� �2 /��1/2�
and s�sm=��m�x�, where �m�x� is the root of the transcen-
dental equation

1

�m
�1 − e−�m/��e−�m =

x2

2
, �58�

and the energy of two particles’ relative motion is larger than
the energy of the potential barrier which again yields vanish-
ing velocity and energy transfers for repulsive interaction.
Thus for q1q2�0 the energy transfer occurs at s0�� and s
�sm. In this case the velocity transfer is �v� =−2vr�, which
corresponds to a reversion of the initial motion, i.e., to a

backscattering event. Then the energy transfer is

�E1 = − �E2 = − 2	V0�vr� �q1q2� �vc
2 − vr�

2 � �sm − s� ,

�59�

where  �z� is the Heaviside function and vc
2=2�q1q2�e”2 /	�.

Consider now the energy-velocity transfers integrated
with respect to the impact parameters s. The result reads

−
1

�2	
0

� �E1�s�
	V0�vs

sds = −
1

�2	
0

� �v��s�
vs

sds = x�m
2 �x� .

�60�

Here �m is a function of x=vr� /vs. �Note that this function
vanishes at x� �2 /��1/2, where the transcendental Eq. �58�
has no solution.� Consider two limiting cases. At vr� /vs
! �2 /��1/2 we obtain from Eq. �58�

�m�x� �
�2��3/2

2� + 1
��2

�
�1/2

− x� �61�

and the s-integrated velocity transfer vanishes as
���2 /��1/2−x�2. At vr� /vs→0, Eq. �58� yields

�m�x� � ln� 2/x2

ln�2/x2�� �62�

and the s-integrated velocity transfer vanishes like

−
1

�2	
0

� �v��s�
vs

sds � x ln2� 2/x2

ln�2/x2�� → 0. �63�

From this simple example it is clear that the perturbative
treatment developed in the previous sections is not appli-
cable for repulsive interaction and in the presence of strong
magnetic field when the hard collisions like backscattering
events may occur. Nevertheless the second-order treatment
for the repulsive case can be improved when the energy
transfers due to the hard collisions are involved in the theory
as the leading terms. The simple example considered above
suggests that this can be done by explicitly using the energy
conservation, see, e.g., Eq. �57�. For simplicity consider the
case when the relative energy of particles is conserved,
�Er=0. Then from Eq. �15� �in the general case m /2 must be
replaced here by the reduced mass 	� and the obvious rela-
tion �Er� =−�Er� we obtain a quadratic equation for the
relative velocity transfer �v� which has two real solutions,

�v�
I = − vr��1 − �1 − "�, �v�

II = − vr��1 + �1 − "� ,

�64�

with "=2�Er� /	vr�
2 . The velocity transfers �v�

I and �v�
II

correspond to two different scattering regimes. In particular,
in the limit of strong magnetic field the transversal energy
transfer is small, "�1, because the transversal motion is
strongly hindered and

�v�
I � − vr�#, �v�

II � − vr��2 −#� , �65�

where #= 1
2"+ 1

8"
2. In the limit of vanishing ", �v�

I→0
while �v�

II→−2vr�, which correspond to over the barrier and
backscattering events, respectively. Thus, in contrast to the
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Rutherford classical scattering the magnetic field may form
two scattering channels, I and II. For instance, the scattering
with an attractive interaction is realized in the regime I while
in the repulsive case the scattering may occur in both re-
gimes I and II depending on the relation between the initial
relative energy, the height of the potential barrier, and the
strength of the magnetic field. In the case of the infinitely
strong magnetic field the boundary between I and II is fixed
by the arguments of the Heaviside functions in Eq. �59�.
According to Eq. �64� the velocity transfers �v�

I and �v�
II

obey an exact relation �v�
I+�v�

II=−2vr�.
We further consider the kinematically allowed range for

regimes I and II. The dimensionless transversal energy trans-
fer " can range −"max$"$1, where "max=v0�

2 /vr�
2 , v0� is

the initial transversal relative velocity. Here "=−"max �"
=1� corresponds to a complete transfer of the initial relative
transversal �longitudinal� motion to the parallel �transversal�
one. Therefore the quantities �v�

I and �v�
II are restricted in

the domains

− vr�$�v�
I$ vr�

"max

�1 + "max + 1
, �66�

− vr��1 + �1 + "max�$�v�
II$ − vr� , �67�

where the boundary between I and II is fixed by �v� =−vr�.
The discussion above indicates that the second-order per-

turbative treatment for the repulsive interaction the regime II
can be improved if instead of the standard approximation
developed in the previous sections, the second relation in Eq.
�65� is used. In particular, in the presence of a strong mag-
netic field the modified second-order velocity transfer reads

�v�
�2� � − 2vr� + vr���Er�

�2�

	vr�
2 +

1

2
��Er�

�1�

	vr�
2 �2� . �68�

Here �Er�
�1� and �Er�

�2� are the first- and second-order relative
transversal energy transfers, respectively. Note that the sec-
ond term in Eq. �68� within the square brackets enters here

by the opposite sign compared to the standard perturbative
treatment where the first �backscattering� term in Eq. �68� is
not involved. Since we assumed the conservation of the rela-
tive energy of the particles these results are valid both for BC
of two identical particles and for ion-electron collisions �with
vi�=0�.

VI. COMPARISON WITH SIMULATIONS

A. CTMC simulations

A fully numerical treatment is required for applications
beyond the perturbative regime and for checking the validity
of the perturbative approach outlined above. In the present
case of binary ion-electron or electron-electron collisions in a
magnetic field and with the effective interaction UR�r� �Eq.
�40�� the numerical evaluation of the BC energy loss is very
complicated, but can be successfully investigated by classi-
cal trajectory Monte Carlo �CTMC� simulations �11–13�. In
the CTMC method �28� the trajectories for the relative mo-
tion between the ion and an electron are calculated by a
numerical integration of the equations of motion �i.e., Eq. �4�
for electron-electron collisions and Eq. �9� for ion-electron
collisions, respectively�, starting with initial conditions for
the parallel vr� and the transverse v0� relative velocity. The
initial positions are chosen to correspond to a certain impact
parameter s and are located outside the interaction zone,
which is—employing a screened interaction like Eq. �40�—
defined as a sphere of several screening lengths � about the
ion. The numerical calculation stops after the electron has
left this interaction zone, that is, when the collision is com-
pleted. Deducing the velocity changes from the initial and
final velocities v�, v�, V�, V� yields the energy transfer �E1
�Eq. �14�� �with �Er=0� or �Ei �Eq. �16��. The required
accuracy is achieved by using a modified velocity-Verlet al-
gorithm, which has been specifically designed for particle
propagation in a �strong� magnetic field �29,30�, and by
adapting continuously the actual time step by monitoring the
constant of motion Er �Eq. �8�� or K �Eq. �11��. The resulting
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FIG. 1. �Color online� The ELCS �i Eq. �72� for ion-electron �with Z�0� collisions in terms of the dimensionless relative velocity
component vr� /vs at a=0, as /�=0.25 �left panel� and a /�=0.5, as /�=0.125 �right panel�. The solid and dashed curves were obtained for
�0=�0 /�=5
10−5 and �0=5
10−2, respectively. The curves with filled symbols are from CTMC simulations. The curves with open
symbols represent the second-order perturbative treatment with constant �=�0. The results of the second-order perturbative treatment with
a modified �dynamical� cutoff parameter ��vr�� �see Eq. �73�� are given by the curves without symbols.
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relative deviations of Er or K are of the order of 10−6–10−5.
The desired average over the initial phases, i.e., over the

orientation of the transverse relative velocity v0� and the
impact parameter s, is performed by a Monte Carlo sampling
�31,32� of a large number of trajectories with different initial
values. The actual number of computed trajectories is ad-
justed by monitoring the convergence of the averaging pro-
cedure. Around 105–106 trajectories are typically needed for
the energy transfer for one set of initial relative and cm ve-
locities and at a given magnetic field.

B. Results

For the forthcoming discussion we put the equation of the
relative motion of two particles in a more appropriate dimen-
sionless form by scaling lengths in units of the screening
length � and velocities in units of a characteristic velocity vs
defined by

vs
2 =

�q1q2�e”2

	�
. �69�

Let us recall that q1=q2=−1, 	=m /2 and q1=−1, q2=Z, 	
=m for electron-electron and ion-electron collisions, respec-
tively. This velocity vs gives a measure for the strength of the
Coulomb interaction with respect to the �initial� kinetic en-
ergy of relative motion 	vr

2 /2. For vr�vs the kinetic energy
is small compared to the characteristic potential energy
�q1q2�e”2 /� in a screened Coulomb potential and we expect to
be in a nonperturbative regime. A perturbative treatment on
the other hand should be applicable for vr�vs.

The scaled version of Eq. �4� or Eq. �9� only depends on
the two dimensionless parameters as /� and � /� and the ini-
tial conditions with positions scaled in � and velocities in vs.
Here as=vs /�c is the cyclotron radius for v�=vs and the
parameter as /��vs /B represents a measure for the strength
of the magnetic field compared to the strength of the Cou-
lomb interaction �which is �vs

2, see Eq. �69��. The ratio � /�
describes the amount of softening of the screened interaction
at r→0 with q1q2e”2UR�r→0�→q1q2e”2 /�.

In the analytical perturbative approach we thus apply the
same scaling of length and velocities and introduce for
electron-electron collisions the dimensionless ELCS

�� = −
1

mV0�vs�
2	

0

2� d

2�
�̄��� , �70�

�� = −
1

mvs
2�2	

0

2� d

2�
�̄��� . �71�

The corresponding dimensionless ELCS for ion-electron in-
teraction is given by

�i =
1

mvi�vs�
2	

0

�

��Ei�sds = −
1

vs�
2	

0

�

��v��sds . �72�

It should be noted that in the regimes where the ELCS �̄���
is not strongly sensitive with respect to the initial phases 
the quantity �i in Eq. �72� is approximately given by �i
�2�� �see also relation �34�� in the units introduced above.
An example of such regime has been considered in Sec. IV B
where �̄��� in the high-velocity limit and in leading order is
independent of ; see Eq. �55�. One can expect that the ap-
proximate relation between the ion-electron and electron-
electron ELCS is valid within second-order perturbative
treatment with arbitrary Z and within exact CTMC simula-
tions, where, however, the ion-electron interaction must be
repulsive �Z�0�.

Next we specify the cutoff parameter �, which is a mea-
sure of softening of the interaction potential at short dis-
tances. As we discussed in previous sections the regulariza-
tion in potential �40� is sufficient to guarantee the existence
of the s-integrated energy transfers, see e.g., Eq. �30�, but
there remains the problem of treating hard collisions. For a
perturbation treatment the change in relative velocity must
be small compared to vr and this condition is increasingly
difficult to fulfill in the regime vr→0. This suggests a physi-
cally reasonable procedure: the potential must be softened
near the origin. In fact the parameter � which describes the
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FIG. 2. �Color online� The ELCS �i Eq. �72� for ion-electron �with Z�0� collision in terms of dimensionless relative velocity component
vr� /vs at a=0 �left panel� and a /�=0.1 �right panel�. The curves with and without symbols correspond to CTMC simulations and the
second-order perturbative treatment, respectively. Left panel: as /�=0.5 �solid curve�, as /�=0.25 �dashed curve�, and as /�=0.125 �dotted
curve�. Right panel: as /�=0.1 �solid curve�, as /�=0.05 �dashed curve�, and as /�=0.025 �dotted curve�.
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effects of quantum diffraction should be related to the de
Broglie wavelength which is inversely proportional to vr.
Here within classical picture of collisions we employ in a
perturbative treatment the dynamical cutoff parameter
��vr��=1+� /��vr��, where

�2�vr�� = Cb0
2�vr�� + �0

2, b0�vr�� =
�q1q2�e”2

	�vr�
2 + v0�

2 �
. �73�

In the case of ion-electron collision �q1q2�, 	 and v0� in Eq.
�73� have to be replaced by �Z�, m, and ve�, respectively.
Here �0 is some constant cutoff parameter and b0�vr�� is the
distance of the closest approach of two charged particles in
the absence of a magnetic field. Also in Eq. �73� we have
introduced an additional fitting parameter C. For determining
C we consider the second-order transport cross section �tr
=−�2� /	vr�V0���, where � is given by Eq. �30�. For the
regularized potential and in high-velocity limit � is given by
Eq. �55�, where the generalized Coulomb logarithm ����
and the cutoff �=��vr�� are determined by Eqs. �53� and
�73�, respectively. Setting �0=0 the obtained high-velocity
transport cross section is then compared with an exact

asymptotic expression derived in Ref. �33� for the Yukawa-
type �i.e., with �→0� interaction potential which yields
C=e2%−1 /4�0.292, where % is Euler’s constant. As will be
shown below the second-order ELCS with dynamical cutoff
parameter �73� excellently agrees with CTMC simulations at
high velocities. The CTMC simulations have been carried
out with constant �=�0�� �or �=�0�� /�0�1�, that is, the
interaction is almost Coulomb at short distances. As an ex-
ample in Fig. 1 we compare the ELCS �i obtained with
CTMC simulations �curves with filled symbols� and within
second-order perturbative treatment either with constant
�=�0 �open symbols� or dynamical cutoff parameter �73�
�curves without symbols�. Two distinct cases are considered
here with �0=�0 /�=5
10−5 and �0=5
10−2. Also a=0
�no cyclotron motion at the initial state�, as /�=0.25 and
a /�=0.5, as /�=0.125 in left and right panels, respectively. It
is seen that with respect to the “softness” of the regularized
potential the agreement between CTMC and the perturbative
treatment improves, keeping all other parameters fixed, for
increasing � /�, that is for a weaker interaction potential UR.
Of course in a nonperturbative classical treatment like the
CTMC simulations no regularization of the potential is
needed and the bare Coulomb potential can be used for the
binary collision treatment. But for consistency the regular-
ized potential with the same �0 as for the second-order per-
turbative treatment has also been used for the CTMC simu-
lations. The CTMC data are, however, almost insensitive to
the actual choice of �0 for �0�10−3 and show the same
results at �0=5
10−5 as for �0=0 �which we have tested for
our CTMC simulations�.

Systematic investigations and comparisons of the ELCS
determined by the CTMC simulations and the second-order
perturbative treatment Eqs. �41�, �42�, and �70�–�72� with the
dynamical cutoff parameter ��vr�� �Eq. �73�� are presented in
Figs. 2–11. We have also compared the CTMC results with
the simple �exact� model given by Eq. �60� for repulsive
ion-electron interactions, Figs. 4 and 5. Shown are �i for
attractive �with Z�0� and repulsive �with Z�0� interactions
�Figs. 2–6�, �� �Figs. 7–9�, and �� �Figs. 10 and 11� as
functions of vr� /vs for fixed cyclotron radii a, a1, and a2 and
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varying the strength of the magnetic field as /�=Bs /B with
Bs=mvs /e�. For each pair of fixed ai�i=1,2� and as the
transversal relative velocity is determined by v0i� /vs=ai /as
�or ve� /vs=a /as for ion-electron collisions�. The CTMC re-
sults are indicated by the curves with filled or open symbols
and the corresponding second-order predictions are given by
the curves without symbols. Both the CTMC and second-
order calculations have been done for a regularized potential
UR with �0=5
10−5. Note also the logarithmic scales for
the ELCS in Figs. 2, 3, and 6–11.

First we discuss some general observations of the behav-
ior of the ELCS. In Figs. 2, 3, and 6–11 we can clearly
observe that in the regimes of large relative velocities
vr� /vs&� �where typically 2$�$4� the second-order per-
turbative treatment agrees perfectly with the numerical
CTMC results. In addition in the limit of very large veloci-
ties vr� /vs�1 the ELCS �i and �� calculated either within
perturbation theory or CTMC method with different
strengths of the magnetic field and transversal velocities con-
verge to the same value. This behavior agrees with the pre-
dictions of the asymptotic expression �55� which is indepen-

dent on B and v01�, v02� �or ve��. It can also be seen that the
smaller the transversal velocities, the better is the conver-
gence to the regime of Eq. �55�. At large relative velocities
the CTMC and second-order ELCS �� shown in Figs. 10
and 11 agree with Eq. �71� with the asymptotic expression
�56�. Since at vr� /vs�1 the quantity �� is not affected by
the magnetic field but behaves as ���v01�

2 ,v02�
2 for fixed

electron cyclotron radii it will be larger for smaller as �more
precisely ���as

−2� as shown in Figs. 10 and 11.
At small velocities with vr� /vs!1 the second-order treat-

ment considerably deviates from CTMC simulations; see
Figs. 1–3 and Figs. 6–11. Here the second-order ELCS are
given by approximate expressions �A6� and �A10� where the
parameter � at small relative velocities is given by �
���0�=1+� /��0� and ��0� is the dynamical cutoff ��vr��
�Eq. �73�� at vr� =0. Note that at finite cyclotron radii of the
particles the quantity ��0� is a constant depending on the
value of �0 and the transversal velocities. However, for van-
ishing cyclotron radii �as, e.g., in the left panels of Figs. 1, 2,
and 7� the cutoff parameter �73� at small velocities behaves
as � /���vs /vr��2. The quantity ��−1�2 involved in Eqs.
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�A6� and �A10� falls as ��vr� /vs�4. This results in a strong
self-cutting at small velocities. Thus employing cutoff �73�
the second-order ELCS �� is strongly reduced and decreases
as �� �vr�

5 and �� �vr�
6 at a=0 and a�0, respectively. The

transversal ELCS ��, i.e., the second term in Eq. �A6�, does
not contain a term ��−1�2 and diverges as ���vr�

−2; see
Figs. 10 and 11. In this small velocity regime the second-
order perturbative treatment is clearly invalid and a nonper-
turbative description is required.

In Figs. 4 and 5 we demonstrate the ELCS �i for repulsive
�Z�0� ion-electron interaction. The dashed curves represent
the ELCS obtained from the simple model considered in Sec.
V, see Eq. �60�, with constant cutoff parameter �0. Let us
recall that model �60� completely ignores the cyclotron mo-
tion of the particles. It is seen that in Fig. 4 the agreement
with CTMC simulations is quite satisfactory even for finite
cyclotron radius a and magnetic field. However, with in-
creasing a the CTMC simulations show a more involved
picture as, e.g., in Fig. 5 than the predictions of a simple
model �60�. Also the deviations from CTMC become more
pronounced with increasing electron transversal velocity ve�

and magnetic field, see, e.g., open symbols in Fig. 5. In the
CTMC simulations the ELCS shrinks strongly at vr�&vs

with increasing relative velocity. This feature can be ex-
plained on the basis of a simple model discussed in Sec. V.
At strong but finite magnetic field the hard collisions like
backscattering events may also occur but the total relative
energy 	vr�

2 /2 in Eq. �57� will be replaced here by the total
energy 	�vr�

2 +ve�
2 � /2. This will reduce the domain of the

backscattering events �regime II introduced in Sec. V�. With
increasing vr� this domain will be further shrunk and finally
the scattering may occur only in regime I where a strong
magnetic field may strongly reduce the energy transfer. �Let
us recall that the ion moves along the magnetic field. In this
case the energy transfer vanishes with increasing B for sym-
metry reason; see Refs. �15,21�.� Obviously this effect is
pronounced by increasing transversal velocity as shown in
Fig. 5. The similar feature is observed also for electron-
electron interactions shown in Fig. 8 and in the right panel of
Fig. 9.

For ion-electron collisions we also compare the ELCS for
attractive �Z�0� and repulsive �Z�0� interactions in Fig. 6.
The solid curves represent the second-order energy transfer
which is quadratic in Z. For small velocities the ELCS �i for
repulsive interaction considerably exceeds the ELCS for at-
tractive interaction. This is because of the backscattering
events at Z�0 with large energy-velocity transfers. How-
ever, with increasing relative velocity the agreement between
second-order theory and CTMC and between two CTMC
with positive and negative Z continuously improves and is
almost perfect over the full range of the velocity at vr� /vs
&1. A different energy loss for attractive and repulsive in-
teraction, e.g., for the stopping of protons compared to anti-
protons in matter, is well known and is called the Barkas
effect �34�. To correct for this, the next coming third-order
O�Z3� term �“Barkas term”� is usually employed in a pertur-
bative approach for the energy loss in the absence of a mag-
netic field �see, e.g., Ref. �35��. Such treatments improve the
second-order theory in the intermediate and high-velocity re-
gime, i.e., well within the domain of validity of a perturba-
tive treatment, but are not appropriate in the low-velocity
regime which clearly requires a nonperturbative description
in particular in the presence of a �strong� magnetic field.
Furthermore, there exists a strong qualitative difference be-

0 2 4 6 8 10 12 14 16 18 20
vr||/vs

10
-4

10
-3

10
-2

10
-1

10
0

σ ||
as/λ = 0.50
as/λ = 0.25
as/λ = 0.125

a1/λ = 0.5, a2 = 0

FIG. 8. �Color online� Same as in Fig. 7 but for a1 /�=0.5 and
as /�=0.5 �solid�, as /�=0.25 �dashed�, and as /�=0.125 �dotted�.

0 2 4 6 8 10 12 14 16 18 20
vr||/vs

10
-4

10
-3

10
-2

10
-1

10
0

σ ||

as/λ = 0.05
as/λ = 0.025
as/λ = 0.0125

a1/λ = 0.05, a2 = a1/2

(b)(a)

0 2 4 6 8 10 12 14 16 18 20
vr||/vs

10
-4

10
-3

10
-2

10
-1

10
0

σ ||

as/λ = 0.50
as/λ = 0.25
as/λ = 0.125

a1/λ = 0.5, a2 = a1/2

FIG. 9. �Color online� Same as in Fig. 7 but for a2=a1 /2 with a1 /�=0.05 �left panel� and a1 /�=0.5 �right panel�. Left panel: as /�
=0.05 �solid curve�, as /�=0.025 �dashed curve�, and as /�=0.0125 �dotted curve�. Right panel: as /�=0.5 �solid�, as /�=0.25 �dashed�, and
as /�=0.125 �dotted�.

H. B. NERSISYAN AND G. ZWICKNAGEL PHYSICAL REVIEW E 79, 066405 �2009�

066405-14



tween the magnetized and the nonmagnetized case. While
the energy loss is larger for the repulsive interaction com-
pared to the attractive one at a strong magnetic field just the
opposite behavior is observed in the field-free case, see, e.g.,
�36�.

As has been emphasized in the preceding sections there
are similarities between electron-electron and ion-electron
�with vi=vi�b� interactions but the energy transfers are not
quite the same. In particular, the approximate relation �i
�2�� for the negative ions with Z�0 may be violated at
small velocities where the electron-electron ELCS �̄��� is
not in general isotropic with respect to . In Figs. 7 and 8 the
cyclotron radius of the second electron vanishes a2=0 and
thus a=a1 as well as �̄��� are isotropic. In this case the
relation between the ELCS is exact �i=2��. In Fig. 9 we
show an anisotropic case where a2=a1 /2 and a1 varies from
a small �left panel� to a large value �right panel�. Another
feature that is absent in ion-electron collisions is the cm cy-
clotron motion for two-electron collisions, which causes the

transversal energy transfer �� shown in Figs. 10 and 11. For
symmetry reason this quantity vanishes at a1=a2 both in
CTMC simulations �within the unavoidable numerical fluc-
tuations� and the second-order theory; see Eq. �42�. In the
examples shown in Figs. 10 and 11 the cyclotron radius a2 of
the second electron is smaller a1, a2�a1. Since the ELCS
�� is positive the transverse energy of the first electron with
a1�a2 transfers to the energy of parallel and transverse mo-
tion of the second electron.

VII. CONCLUSION

In this paper we have investigated the binary collisions
�BC� of two charged particles in the presence of constant
magnetic field employing second-order perturbation theory
and classical trajectory Monte Carlo �CTMC� simulations.
Two distinct cases with symmetric and strongly asymmetric
charges and masses of the particles have been considered in
detail: �i� BC between two identical particles �e.g., electrons�
and �ii� between an electron and heavy ion which moves
with rectilinear trajectory �no cyclotron motion� along the
magnetic field. Physically these two distinct cases are similar
except the time-dependent center-of-mass cyclotron motion
in the case of two identical particles. The second-order en-
ergy transfer for two-particle collision is calculated with the
help of an improved BC treatment which is valid for any
strength of the magnetic field and thus involves all cyclotron
harmonics of the particles’ motion. For further applications
�e.g., in cooling of ion beams, transport phenomena in mag-
netized plasmas� the actual calculations of the energy trans-
fers have been done with a screened interaction potential
which is regularized at the origin. The use of that potential
can be viewed as an alternative to the standard cutoff proce-
dure. For repulsive ion-electron collisions we furthermore
presented an exact solution for the energy transfer in the
presence of an infinitely strong magnetic field. Here back-
scattering events may occur when the relative velocity trans-
fer is independent of the strength of the Coulomb �regular-
ized and screened� interaction �v� =−2vr�, where vr� is the
initial relative velocity of the guiding centers of the particles.
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FIG. 10. �Color online� The ELCS �� Eq. �71� for electron-
electron collision in terms of dimensionless relative velocity com-
ponent vr� /vs for a2=0, a1 /�=0.5 and as /�=0.5 �solid curve�,
as /�=0.25 �dashed�, as /�=0.125 �dotted�. The curves with and
without symbols correspond to CTMC simulations and the second-
order perturbative treatment, respectively.
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FIG. 11. �Color online� Same as in Fig. 10 but for a2=a1 /2 and at a1 /�=0.05 �left panel� and a1 /�=0.5 �right panel�. Left panel:
as /�=0.05 �solid curve�, as /�=0.025 �dashed�, and as /�=0.0125 �dotted�. Right panel: as /�=0.5 �solid�, as /�=0.25 �dashed�, and as /�
=0.125 �dotted�.

BINARY COLLISIONS OF CHARGED PARTICLES IN A… PHYSICAL REVIEW E 79, 066405 �2009�

066405-15



The second-order perturbative treatment is clearly invalid in
this case. It has been shown that for repulsive interaction of
the particles in a strong but finite magnetic field two scatter-
ing regimes must be distinguished with and without back-
scattering events with large energy-velocity transfers. This
also suggests an improved perturbative treatment for repul-
sive interaction and in the case of strong magnetic field.

For checking the validity of the perturbative approach and
also for applications beyond the perturbative regime we have
employed numerical CTMC simulations. These CTMC cal-
culations have been performed in a wide range of parameters
�magnetic field and the relative velocities of the particles�
and for a small regularization parameter, that is, for an inter-
action which is rather close to Coulomb at short distances.
Within the second-order treatment we have introduced a dy-
namical cutoff parameter which substantially improves the
agreement of the theory with CTMC simulations. From a
comparison with the nonperturbative CTMC simulations we
have found as a quite general rule which is widely indepen-
dent of the magnetic field strength that the predictions of the
second-order perturbative treatment are very accurate for
vr� /vs&4 for all studied parameters and cases, with the char-
acteristic velocity vs given by Eq. �69�. In contrast, for low
relative velocities vr� /vs!1 the results obtained from pertur-
bation theory strongly deviate from the CTMC simulations.
Moreover in this regime the CTMC calculations display a
large difference between positive and negative ions which
disappears for high velocities vr�. Such a difference is com-
pletely absent in the second-order perturbative treatment
where the energy transfers are quadratic in the ion charge Ze.
We have also tested the exact analytical model Eq. �60� de-
rived for repulsive interaction and an infinitely strong mag-
netic field by comparing it in Figs. 4 and 5 with the CTMC
simulations and found that the agreement is rather satisfac-
tory even for finite �but strong� magnetic fields.

We believe that our theoretical findings will be useful for
the interpretation of experimental investigations. Here, it is
of particular interest to study some macroscopic physical
quantities on the basis of the presented theoretical model
such as cooling forces in storage rings and traps, stopping
power of ion beams as well as transport coefficients in
strongly magnetized plasmas. These studies require an aver-
age of the energy or velocity transfers with respect to the
velocity distribution of the electrons. The cooling forces ob-
tained by the perturbative approach are expected to be quite
accurate if the low-velocity regime only slightly contributes
to the vr average over ��E�. That is, if the typical vr�, given
by the maximum of the thermal electron velocity and the ion
velocity, are large compared to vs, as it is usually the case
for, e.g., electron cooling in storage rings.

In this paper for the relative energy transfers we have
derived Eqs. �38�, �39�, and �47�–�51�. Concerning the equi-
partition rate and other transport coefficients as an applica-
tion for these equations the explicit calculations and com-
parison with the results obtained previously �see, e.g., Ref.
�10�� we intend to discuss in a separate paper. Another inter-
esting issue not considered here is the interaction of the mag-
netized electrons with light ions �in particular with positrons,
protons, and antiprotons� when the magnetic field is so
strong that the cyclotron motion of the ion cannot be ne-

glected anymore. In this case the relative and center-of-mass
motions are coupled to each other and the center-of-mass
velocity of the particles cannot be represented in the form of
simple cyclotron motion, Eq. �6�. A detailed comparison with
cooling force measurements and a study of other aspects are
in progress and the results will be reported elsewhere.
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APPENDIX: THE ENERGY TRANSFER IN A SMALL
VELOCITY LIMIT

For the second-order BC treatment the most critical situ-
ation is the small velocity regime where we expect some
deviations from the nonperturbative CTMC simulations. For
the improvement of the theoretical approach it is therefore
imperative to investigate the energy transfer in the small ve-
locity limit, �vr���v0�, or alternatively ��a. In principle
this limit can be evaluated using the integral representation
of the ELCS, Eqs. �41�, �42�, �47�, and �48�. However, while
these expressions are very convenient to calculate the high-
velocity limit of the energy transfers �see Sec. IV� they are
not adopted for the evaluation of the small velocity limit due
to the oscillatory nature of the function R�t� at vr�→0. In this
appendix we consider instead an alternative but equivalent
expression for the ELCS. For the axially symmetric interac-
tion potential the ELCS can be evaluated using Eqs. �28�,
�38�, and �39�. We refer the reader to Refs. �15,21� for de-
tails. The integration of Eq. �28� with respect to the impact
parameter s yields the two-dimensional � function, ��k�

+k�� �, which combining with ��k� +k��� in Eq. �28� yields a
three-dimensional � function ��k+k��. The k� integration in
the energy transfer can be then performed exactly. Further-
more it can be shown that the ELCS is determined by the
imaginary part Im�Gn�k ,−k��, which is expressed by the
functions ���n�k�� �see Eq. �57� of �21��. This allows to per-
form the k� integration. Equations �38� and �39� are evaluated
using the Fourier series of the Bessel functions and perform-
ing t and k integrations. The final result reads

�̄�� = −
4q4e”4

mvr�
3 �

n=0

�

�n�2n2

�2 V̄���3#n;1�k�,a�

+ k�

�

�k�

#n;1�k�,a� +
�2

a

�

�a
#n;1�k�,a�� +

vr�

2
f��


�2n2

�2 #n;1�k�,a� +#n−1;3�k�,a�

+#n+1;3�k�,a���
k�=n/�

, �A1�
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�̄r��� =
8q4e”4�c

2

mvr�
4 �

n=1

�

n2�2#n;1�k�,a� + k�

�

�k�

#n;1�k�,a�

+
�2

a

�

�a
#n;1�k�,a��

k�=n/�
, �A2�

�̄r1�� =
8q4e”4

�2 �
n=1

�

�n2#n;1�k�,a��k�=n/�, �A3�

where the function #n;m�k� ,a� is defined as

#n;m�k�,a� =
�2��4

4
	

0

�

U2�k�,k��Jn
2�k�a�k�

mdk�. �A4�

In Eq. �A1� we have introduced the notations �n=1− 1
2�n0,

V̄��=V0� − �vr� /2�f��, with f��= �a1
2−a2

2� /a2��.
Equations �A1�–�A3� are equivalent to the integral repre-

sentations �31�–�33�, �38�, and �39� of the ELCS, respec-
tively. The function #n;m�k� ,a� is taken at k� =n /�, which in
the limit of small velocities becomes very large �except the
term with n=0 in Eq. �A1��. For the regularized interaction
potential �40� from Eq. �A4� at k�a�1 we obtain

#n;1�k�,a� �
5�3

32a

��2 − 1�2

�k���7 , #n;3�k�,a� �
�

32a

��2 − 1�2

�k���5 .

�A5�

Substituting these expressions into Eqs. �A1� and �A2� in the
lowest order with respect to vr� �or �� we arrive at

�̄�� �
q4e”4

m
� �vr��

vr�

5��5�V0�

��c��3 ��2 − 1�2� �
�
�2�

a

−
2

vr�
2 f��'� a

�
�� , �A6�

�̄r��� � −
25��5�q4e”4

4m�c
2�2 ��2 − 1�2� �

�
�3�

a
, �A7�

�̄r1�� �
5��5�q4e”4

4
��2 − 1�2� �

�
�5�

a
. �A8�

Here ��z� is the Riemann function with ��5��1.0369. The
function '�u� is expressed by the modified Bessel functions

'�u� =
1

2u

�

�u

u2�I1�u�K1�u� + I1��u�K1��u���

+
2

�2 − 1
�I1�u�K1�u� − �2I1��u�K1��u�� . �A9�

The case of ion-electron BC is easily recovered from the
obtained expressions as described at the end of Sec. IV. Note
that the cm cyclotron motion is absent here and in Eqs. �A1�
and �A6� the terms proportional to the function f�� must be
neglected.

From Eqs. �A6�–�A8� we then obtain that the relative
transversal ELCS at small relative velocities behave as
�̄r����vr�

3 and �̄r1���vr�
5 . The first term in the ELCS

�̄�� vanishes as �vr�
2 while the second one which corre-

sponds to the zero harmonic with n=0 in Eq. �A1� diverges
as �vr�

−2. This latter term vanishes at a1=a2 and predicts an
infinitely large energy transfer at a1�a2 �or energy gain at
a1�a2�. As expected the ELCS �A6�–�A8� are strongly an-
isotropic with respect to the phase .

Finally, we consider the small velocity limit of �̄�� and
�̄r��� at vanishing cyclotron radius, a=0 �see Eq. �52��,

�̄�� = −
V0�

vr�

�̄r��� � −
q4e”4V0�vr�

3m�c
4�4 ��2 − 1�2. �A10�

In this case �̄���vr� and �̄r����vr�
2 at small relative ve-

locity vr� �cf. with Eqs. �A6� and �A7��.
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